More

This hellish spider from nightmare-land may be man's other best friend.

Warning: You may hate spiders a little less after reading this story.

This hellish spider from nightmare-land may be man's other best friend.

This is the Evarcha culicivora, a spider native to East Africa.

Or, in layman's terms, a horrifying beast from the depths of hell.


Photo by Robert Jackson/ICIPE/Flickr.

Here are some tidbits about the Evarcha culicivora that'll keep you up at night:

  • They're jumping spiders. Yes, they pounce onto their prey.
  • They're attracted to the smell of humans. They smell us and they come crawlin' our way.
  • They really enjoy consuming our blood. They have very particular tastes, and our blood takes the cake.

However, this article has been nothing but fear-mongering thus far (sorry!). Because while the Evarcha culicivora may seem like something that belongs in that "Arachnophobia" movie, it's actually completely harmless to us.

In fact, these spiders could help save lives.

The Evarcha culicivora could play a helpful role in the fight against malaria.

A new study by researchers at New Zealand's University of Canterbury and the International Center of Insect Physiology and Ecology looked at what these spiders like to eat. They found, reiterating what previous studies have also, that these "mosquito terminators" shouldn't be feared at all — they should be viewed as friends.

(I know, friends sounds like quite a stretch. But follow me here.)

Female Anopheles mosquitoes carry and spread malaria. It's a preventable yet deadly disease that's responsible for about 500,000 deaths a year. Even though that figure has dropped significantly since 2000, allowing half a million preventable deaths is still, by any measure, unacceptable.

Tragically, malaria kills mostly children in developing regions of the world.

Photo by Stephanie Aglietti/AFP/Getty Images.

Here's the good news: The Evarcha culicivora has a specialized craving for those female Anopheles mosquitoes.

Feasting on our blood gives these spiders an odor that attracts mates. So, naturally, they're gunning for it. But earlier — when I said these spiders love our blood — I didn't say it had to be in us. Funny story: These spiders' mouths aren't even equipped to bite humans.

They can, however, snack on human blood carried by malaria-transmitting mosquitoes.

"This is unique," Fiona Cross, who co-authored the study, told The Guardian. "There's no other animal that targets its prey based on what that prey has eaten."

Photo by Robert Jackson/ICIPE/Flickr.

So yes, the recent study further confirms these terrifying beasts from hell may actually be a godsend. But there are still hurdles to clear before we'll see a substantial impact on malaria infections.

For one: Disliking spiders is a pretty universal feeling, as it turns out. While it's actually a blessing in disguise, people hate the fact that a creepy creature like Evarcha culicivora wants to hang out in their homes. Other mosquito-eating spiders — like, say, Paracyrba wanlessi, which prefers living in bamboo stems and feasting on mosquito larvae in water — have housing preferences and eating habits that make them far less effective in the fight against malaria.

Cross pointed out humans' general disdain for eight-legged predators is fairly ingrained: “People need to know that these organisms are harmless and will not attack them."

That may be a tough fear to overcome for many of us. But I'd say it's a fear worth conquering if it means a life saved from malaria.

Since his first hit single "Keep Your Head Up" in 2011, award-winning multi-platinum recording artist Andy Grammer has made a name for himself as the king of the feel-good anthem. From "Good to Be Alive (Hallelujah)" to "Honey, I'm Good" to "Back Home" and more, his positive, upbeat songs have blared on beaches and at backyard barbecues every summer.

So what does a singer who loves to perform in front of live audiences and is known for uplifting music do during an unexpectedly challenging year of global pandemic lockdown?

He goes inward.

Grammer told Upworthy that losing the ability to perform during the pandemic forced him to look at where his self-worth came from. "I thought I would have scored better, to be honest," he says. "Like, 'Oh, I get it from all the important, right places!' And then it's taken all away in one moment, and you're like, 'Oh, nope, I was getting a lot from that.'

"It's kind of cool to break all the way down and then hopefully put myself back together in a way that's a little more solid," he says.

Keep Reading Show less

Since his first hit single "Keep Your Head Up" in 2011, award-winning multi-platinum recording artist Andy Grammer has made a name for himself as the king of the feel-good anthem. From "Good to Be Alive (Hallelujah)" to "Honey, I'm Good" to "Back Home" and more, his positive, upbeat songs have blared on beaches and at backyard barbecues every summer.

So what does a singer who loves to perform in front of live audiences and is known for uplifting music do during an unexpectedly challenging year of global pandemic lockdown?

He goes inward.

Grammer told Upworthy that losing the ability to perform during the pandemic forced him to look at where his self-worth came from. "I thought I would have scored better, to be honest," he says. "Like, 'Oh, I get it from all the important, right places!' And then it's taken all away in one moment, and you're like, 'Oh, nope, I was getting a lot from that.'

"It's kind of cool to break all the way down and then hopefully put myself back together in a way that's a little more solid," he says.

Keep Reading Show less
True

Each year, an estimated 1.8 million people in the United States are affected by cancer — most commonly cancers of the breast, lung, prostate, and blood cancers such as leukemia. While not everyone overcomes the disease, thanks to science, more people are surviving — and for longer — than ever before in history.

We asked three people whose lives have been impacted by cancer to share their stories – how their lives were changed by the disease, and how they're using that experience to change the future of cancer treatments with the hope that ultimately, in the fight against cancer, science will win. Here's what they had to say.

Celine Ryan, 55, engineer database programmer and mother of five from Detroit, MI

Photo courtesy of Celine Ryan

In September 2013, Celine Ryan woke up from a colonoscopy to some traumatic news. Her gastroenterologist showed her a picture of the cancerous mass they found during the procedure.

Ryan and her husband, Patrick, had scheduled a colonoscopy after discovering some unusual bleeding, so the suspicion she could have cancer was already there. Neither of them, however, were quite prepared for the results to be positive -- or for the treatment to begin so soon. Just two days after learning the news, Ryan had surgery to remove the tumor, part of her bladder, and 17 cancerous lymph nodes. Chemotherapy and radiation soon followed.

Ryan's treatment was rigorous – but in December 2014, she got the devastating news that the cancer, once confined to her colon, had spread to her lungs. Her prognosis, they said, was likely terminal.

But rather than give up hope, Ryan sought support from online research, fellow cancer patients and survivors, and her medical team. When she brought up immunotherapy to her oncologist, he quickly agreed it was the best course of action. Ryan's cancer, like a majority of colon and pancreatic cancers, had been caused by a defect on the gene KRAS, which can result in a very aggressive cancer that is virtually "undruggable." According to the medical literature, the relatively smooth protein structure of the KRAS gene meant that designing inhibitors to bind to surface grooves and treat the cancer has been historically difficult. Through her support systems, Ryan discovered an experimental immunotherapy trial at the National Institutes of Health (NIH) in Bethesda, MD., and called them immediately to see if she was eligible. After months of trying to determine whether she was a suitable candidate for the experimental treatment, Ryan was finally accepted.

The treatment, known as tumor-infiltrating lymphocyte therapy, or TIL, is a testament to how far modern science has evolved. With this therapy, doctors remove a tumor and harvest special immune cells that are found naturally in the tumor. Doctors then grow the cells in a lab over the next several weeks with a protein that promotes rapid TIL growth – and once the cells number into the billions, they are infused back into the patient's body to fight the cancer. On April 1, 2015, Ryan had her tumor removed at the NIH. Two months later, she went inpatient for four weeks to have the team "wash out" her immune system with chemotherapy and infuse the cells – all 148 billion of them – back into her body.

Six weeks after the infusion, Ryan and Patrick went back for a follow-up appointment – and the news they got was stunning: Not only had no new tumors developed, but the six existing tumors in her lungs had shrunk significantly. Less than a year after her cell infusion, in April 2016, the doctors told Ryan news that would have been impossible just a decade earlier: Thanks to the cell infusion, Ryan was now considered NED – no evaluable disease. Her body was cancer-free.

Ryan is still NED today and continuing annual follow-up appointments at the NIH, experiencing things she never dreamed she'd be able to live to see, such as her children's high school and college graduations. She's also donating her blood and cells to the NIH to help them research other potential cancer treatments. "It was an honor to do so," Ryan said of her experience. "I'm just thrilled, and I hope my experience can help a lot more people."

Patrice Lee, PhD, VP of Pharmacology, Toxicology and Exploratory Development at Pfizer

Photo courtesy of Patrice Lee

Patrice Lee got into scientific research in an unconventional way – through the late ocean explorer Jacques Cousteau.

Lee never met Cousteau but her dreams of working with him one day led her to pursue a career in science. Initially, Lee completed an undergraduate degree in marine biology; eventually, her interests changed and she decided to get a dual doctoral degree in physiology and toxicology at Duke University. She now works at Pfizer's R&D site in Boulder, CO (formerly Array BioPharma), leading a group of scientists who determine the safety and efficacy of new oncology drugs.

"Scientists focused on drug discovery and development in the pharmaceutical industry are deeply committed to inventing new therapies to meet unmet needs," Lee says, describing her field of work. "We're driven to achieve new medicines and vaccines as quickly as possible without sacrificing safety."

Among the drugs Lee has helped develop during her career, including cancer therapies, she says around a dozen are currently in development, while nine have received FDA approval — an incredible accomplishment as many scientists spend their careers without seeing their drug make it to market. Lee's team is particularly interested in therapies for brain metastases — something that Lee says is a largely unmet need in cancer research, and something her team is working on from a variety of angles. "Now that we've had rapid success with mRNA vaccine technology, we hope to explore what the future holds when applying this technology to cancers," Lee says.

But while evaluating potential cancer therapies is a professional passion of Lee's, it's also a mission that's deeply personal. "I'm also a breast cancer survivor," she says. "So I've been on the other side of things and have participated in a clinical trial."

However, seeing how melanoma therapies that she helped develop have affected other real-life cancer patients, she says, has been a highlight of her career. "We had one therapy that was approved for patients with BRAF-mutant metastatic melanoma," Lee recalls. "Our team in Boulder was graced by a visit from a patient that had benefited from these drugs that we developed. It was a very special moment for the entire team."

None of these therapies would be available, Lee says without rigorous science behind it: "Facts come from good science. Facts will drive the development of new drugs, and that's what will help patients."

Chiuying "Cynthia" Kuk (they/them) MS, 34, third-year medical student at Michigan State University College of Human Medicine

Photo courtesy of Cynthia Kuk

Cynthia Kuk was just 10 years old when they had a conversation that would change their life forever.

"My mother, who worked as a translator for the government at the time, had been diagnosed with breast cancer, and after her chemotherapy treatments she would get really sick," Kuk, who uses they/them pronouns, recalls. "When I asked my dad why mom was puking so much, he said it was because of the medicine she was taking that would help her get better."

Kuk's response was immediate: "That's so stupid! Why would a medicine make you feel worse instead of better? When I'm older, I want to create medicine that won't make people sick like that."

Nine years later, Kuk traveled from their native Hong Kong to the United States to do exactly that. Kuk enrolled in a small, liberal arts college for their Bachelor's degree, and then four years later started a PhD program in cancer research. Although Kuk's mother was in remission from her cancer at the time, Kuk's goal was the same as it had been as a 10-year-old watching her suffer through chemotherapy: to design a better cancer treatment, and change the landscape of cancer research forever.

Since then, Kuk's mission has changed slightly.

"My mom's cancer relapsed in 2008, and she ended up passing away about five years after that," Kuk says. "After my mom died, I started having this sense of urgency. Cancer research is such that you work for twenty years, and at the end of it you might have a fancy medication that could help people, but I wanted to help people now." With their mother still at the forefront of their mind, Kuk decided to quit their PhD program and enter medical school.

Now, Kuk plans to pursue a career in emergency medicine – not only because they are drawn to the excitement of the emergency room, but because the ER is a place where the most marginalized people tend to seek care.

"I have a special interest in the LGBTQ+ population, as I identify as queer and nonbinary," says Kuk. "A lot of people in this community and other marginalized communities access care through the ER and also tend to avoid medical care since there is a history of mistreatment and judgement from healthcare workers. How you carry yourself as a doctor, your compassion, that can make a huge difference in someone's care."

In addition to making a difference in the lives of LGBTQ+ patients, Kuk wants to make a difference in the lives of patients with cancer as well, like their mother had.

"We've diagnosed patients in the Emergency Department with cancer before," Kuk says. "I can't make cancer good news but how you deliver bad news and the compassion you show could make a world of difference to that patient and their family."

During their training, Kuk advocates for patients by delivering compassionate and inclusive care, whether they happen to have cancer or not. In addition to emphasizing their patient's pronouns and chosen names, they ask for inclusive social and sexual histories as well as using gender neutral language. In doing this, they hope to make medicine as a whole more accessible for people who have been historically pushed aside.

"I'm just one person, and I can't force everyone to respect you, if you're marginalized," Kuk says. "But I do want to push for a culture where people appreciate others who are different from them."