These awesome pics are what happens when a runaway star slams into a cloud of space dust.

How fast is a star?

Though the stars in the sky seem pretty fixed, they're actually all moving relative to each other. You just can't tell because they're so far away. Even the constellations are only temporary — in another 50,000 years, they may look very different!

No two stars are moving the exact same way, either. Some move at very different speeds, which means that while some stars are like this:


GIF from ExperimentalUTubeChannel/YouTube.

Others are like this:

GIF from "Star Wars."

Or something like that, anyway. They're not jumping to light speed, but they are pretty dang fast.

How do you track down a super-fast star?

That's what William Chick and his team of astronomers at the University of Wyoming wanted to do.

"We are using the bow shocks to find massive and/or runaway stars," said Henry Kobulnicky, another astronomer from the University of Wyoming.

Wait. Bow shock? What the heck is a bow shock?

As the stars zoom through space, material shoots out of them, creating a kind of solar wind. This wind hits any dust or gas in the star's way, causing it to pile up in front of the star. It's kind of like how a boat makes water bunch up in front of it.

Yeah, like that. Image from AlfvanBeem/Wikimedia Commons.

On a boat, it's a bow wave. On a star or a bullet or a plane, it's bow shock.

Eventually, the bow shocks' big, chaotic pileup heats up the gas and dust in front of the star and causes it to glow. Most of the light is infrared, which means it's invisible to the naked eye. But if you have an infrared telescope, you can spot the bow shocks. Some of them are a bit hard to see:

Image from NASA/JPL-Caltech/University of Wyoming.

But some of them are just ... wow.

Image from NASA/JPL-Caltech/UCLA.

That star, called Zeta Ophiuchi, is hurtling across the galaxy at 54,000 mph and is gigantic — 20 times as massive as our sun. It's the Rebel Without a Cause of stars — living fast, dying young. It'll speed across the galaxy for about another 4 million years before exploding in a gigantic supernova like some sort of cosmic firework.

What made these stars so fast in the first place?

"Some stars get the boot when their companion star explodes in a supernova," said Chick. That's what they think happened to Zeta Ophiuchi up there. Others get slingshotted out of star clusters.

Our own sun isn't moving quite as fast as Zeta Ophiuchi; it's in the slow and steady camp. As for exactly how fast, it depends on what you're measuring it against, but Stanford University puts the sun's speed at a more stately 45,000 mph. We're not sure if our sun has a bow shock.

To find these stars, Chick and his team used data from a pair of powerful telescopes located in outer space, the Spitzer Space Telescope and Wide-field Infrared Survey Explorer (WISE). Other researchers are also looking at bow shocks to try to learn how these massive, fast stars live and die. Learning more about them could help us understand more about our own solar system and how the universe works.

Want one more picture? OK, just one more.


Bow shock around LL Orionis. Image from Hubble Heritage/Flickr.

Yeah.


GIF from wolfwaffles.com

When "bobcat" trended on Twitter this week, no one anticipated the unreal series of events they were about to witness. The bizarre bobcat encounter was captured on a security cam video and...well...you just have to see it. (Read the following description if you want to be prepared, or skip down to the video if you want to be surprised. I promise, it's a wild ride either way.)

In a North Carolina neighborhood that looks like a present-day Pleasantville, a man carries a cup of coffee and a plate of brownies out to his car. "Good mornin!" he calls cheerfully to a neighbor jogging by. As he sets his coffee cup on the hood of the car, he says, "I need to wash my car." Well, shucks. His wife enters the camera frame on the other side of the car.

So far, it's just about the most classic modern Americana scene imaginable. And then...

A horrifying "rrrrawwwww!" Blood-curdling screaming. Running. Panic. The man abandons the brownies, races to his wife's side of the car, then emerges with an animal in his hands. He holds the creature up like Rafiki holding up Simba, then yells in its face, "Oh my god! It's a bobcat! Oh my god!"

Then he hucks the bobcat across the yard with all his might.

Keep Reading Show less
Images courtesy of John Scully, Walden University, Ingrid Scully
True

Since March of 2020, over 29 million Americans have been diagnosed with COVID-19, according to the CDC. Over 540,000 have died in the United States as this unprecedented pandemic has swept the globe. And yet, by the end of 2020, it looked like science was winning: vaccines had been developed.

In celebration of the power of science we spoke to three people: an individual, a medical provider, and a vaccine scientist about how vaccines have impacted them throughout their lives. Here are their answers:

John Scully, 79, resident of Florida

Photo courtesy of John Scully

When John Scully was born, America was in the midst of an epidemic: tens of thousands of children in the United States were falling ill with paralytic poliomyelitis — otherwise known as polio, a disease that attacks the central nervous system and often leaves its victims partially or fully paralyzed.

"As kids, we were all afraid of getting polio," he says, "because if you got polio, you could end up in the dreaded iron lung and we were all terrified of those." Iron lungs were respirators that enclosed most of a person's body; people with severe cases often would end up in these respirators as they fought for their lives.

John remembers going to see matinee showings of cowboy movies on Saturdays and, before the movie, shorts would run. "Usually they showed the news," he says, "but I just remember seeing this one clip warning us about polio and it just showed all these kids in iron lungs." If kids survived the iron lung, they'd often come back to school on crutches, in leg braces, or in wheelchairs.

"We all tried to be really careful in the summer — or, as we called it back then, 'polio season,''" John says. This was because every year around Memorial Day, major outbreaks would begin to emerge and they'd spike sometime around August. People weren't really sure how the disease spread at the time, but many believed it traveled through the water. There was no cure — and every child was susceptible to getting sick with it.

"We couldn't swim in hot weather," he remembers, "and the municipal outdoor pool would close down in August."

Then, in 1954 clinical trials began for Dr. Jonas Salk's vaccine against polio and within a year, his vaccine was announced safe. "I got that vaccine at school," John says. Within two years, U.S. polio cases had dropped 85-95 percent — even before a second vaccine was developed by Dr. Albert Sabin in the 1960s. "I remember how much better things got after the vaccines came out. They changed everything," John says.

Keep Reading Show less