Working at tiny scales, scientists transform gold into something even more incredible.

You've heard of nanotech, right? It's basically working with things that are really, really tiny.*

When you zoom into something to a super small scale, really surprising things can happen.

Take gold. We like it because it lasts a lifetime (and longer)! It makes good watches, rings, and coins because it doesn't react with oxygen and become tarnished or corroded. It just sits there, a gleaming symbol of never-ending love and power.


But if you zoom in much, much more closely to a tiny particle of gold, it transforms to something very different!

One of your grandparents can wear a gold ring that doesn't change in a lifetime. But up close, gold becomes a much more exciting scene.

Scientists have been able to attach molecules of drugs to surfaces of gold at this scale and use gold as a delivery vehicle to take medicines to particular sites in the body. Vroom!

Rod-shaped nano gold particles can be loaded up with antibodies that bond only to cancer cells. The nano gold can by made to oscillate via infrared light until — boom! Bad day for cancer cell.

Zoom in even farther, and things get really weird.

Super tiny pieces of gold can be used to change carbon monoxide to carbon dioxide. That kind of magic suggests that maybe we can use gold to make better breathing apparatus for fire fighters, for example, or to purify water.

We're already surrounded by products using nanotech. Nano silver in clothing and packaging fights bacteria that makes things stinky. Nano titanium dioxide makes sunscreens, paints, and other coatings more reflective, helping shield your body and your house from the sun.

These wondrous tiny things can also easily pass through cell membranes, taking new materials where they've never gone before. So, like with all new technologies, we do want to be careful to research the risks as well as the benefits as we develop and deploy it.

That said, the future looks pretty sparkly for nano gold!


*For an excellent overview of scale check out this video that zooms from the smallest thing we know to the largest. You hit nano scale at about 0:39.

Images courtesy of John Scully, Walden University, Ingrid Scully
True

Since March of 2020, over 29 million Americans have been diagnosed with COVID-19, according to the CDC. Over 540,000 have died in the United States as this unprecedented pandemic has swept the globe. And yet, by the end of 2020, it looked like science was winning: vaccines had been developed.

In celebration of the power of science we spoke to three people: an individual, a medical provider, and a vaccine scientist about how vaccines have impacted them throughout their lives. Here are their answers:

John Scully, 79, resident of Florida

Photo courtesy of John Scully

When John Scully was born, America was in the midst of an epidemic: tens of thousands of children in the United States were falling ill with paralytic poliomyelitis — otherwise known as polio, a disease that attacks the central nervous system and often leaves its victims partially or fully paralyzed.

"As kids, we were all afraid of getting polio," he says, "because if you got polio, you could end up in the dreaded iron lung and we were all terrified of those." Iron lungs were respirators that enclosed most of a person's body; people with severe cases often would end up in these respirators as they fought for their lives.

John remembers going to see matinee showings of cowboy movies on Saturdays and, before the movie, shorts would run. "Usually they showed the news," he says, "but I just remember seeing this one clip warning us about polio and it just showed all these kids in iron lungs." If kids survived the iron lung, they'd often come back to school on crutches, in leg braces, or in wheelchairs.

"We all tried to be really careful in the summer — or, as we called it back then, 'polio season,''" John says. This was because every year around Memorial Day, major outbreaks would begin to emerge and they'd spike sometime around August. People weren't really sure how the disease spread at the time, but many believed it traveled through the water. There was no cure — and every child was susceptible to getting sick with it.

"We couldn't swim in hot weather," he remembers, "and the municipal outdoor pool would close down in August."

Then, in 1954 clinical trials began for Dr. Jonas Salk's vaccine against polio and within a year, his vaccine was announced safe. "I got that vaccine at school," John says. Within two years, U.S. polio cases had dropped 85-95 percent — even before a second vaccine was developed by Dr. Albert Sabin in the 1960s. "I remember how much better things got after the vaccines came out. They changed everything," John says.

Keep Reading Show less

Simon & Garfunkel's song "Bridge Over Troubled Water" has been covered by more than 50 different musical artists, from Aretha Franklin to Elvis Presley to Willie Nelson. It's a timeless classic that taps into the universal struggle of feeling down and the comfort of having someone to lift us up. It's beloved for its soothing melody and cathartic lyrics, and after a year of pandemic challenges, it's perhaps more poignant now than ever.

A few years a go, American singer-songwriter Yebba Smith shared a solo a capella version of a part of "Bridge Over Troubled Water," in which she just casually sits and sings it on a bed. It's an impressive rendition on its own, highlighting Yebba's soulful, effortless voice.

But British singer Jacob Collier recently added his own layered harmony tracks to it, taking the performance to a whole other level.

Keep Reading Show less
Images courtesy of John Scully, Walden University, Ingrid Scully
True

Since March of 2020, over 29 million Americans have been diagnosed with COVID-19, according to the CDC. Over 540,000 have died in the United States as this unprecedented pandemic has swept the globe. And yet, by the end of 2020, it looked like science was winning: vaccines had been developed.

In celebration of the power of science we spoke to three people: an individual, a medical provider, and a vaccine scientist about how vaccines have impacted them throughout their lives. Here are their answers:

John Scully, 79, resident of Florida

Photo courtesy of John Scully

When John Scully was born, America was in the midst of an epidemic: tens of thousands of children in the United States were falling ill with paralytic poliomyelitis — otherwise known as polio, a disease that attacks the central nervous system and often leaves its victims partially or fully paralyzed.

"As kids, we were all afraid of getting polio," he says, "because if you got polio, you could end up in the dreaded iron lung and we were all terrified of those." Iron lungs were respirators that enclosed most of a person's body; people with severe cases often would end up in these respirators as they fought for their lives.

John remembers going to see matinee showings of cowboy movies on Saturdays and, before the movie, shorts would run. "Usually they showed the news," he says, "but I just remember seeing this one clip warning us about polio and it just showed all these kids in iron lungs." If kids survived the iron lung, they'd often come back to school on crutches, in leg braces, or in wheelchairs.

"We all tried to be really careful in the summer — or, as we called it back then, 'polio season,''" John says. This was because every year around Memorial Day, major outbreaks would begin to emerge and they'd spike sometime around August. People weren't really sure how the disease spread at the time, but many believed it traveled through the water. There was no cure — and every child was susceptible to getting sick with it.

"We couldn't swim in hot weather," he remembers, "and the municipal outdoor pool would close down in August."

Then, in 1954 clinical trials began for Dr. Jonas Salk's vaccine against polio and within a year, his vaccine was announced safe. "I got that vaccine at school," John says. Within two years, U.S. polio cases had dropped 85-95 percent — even before a second vaccine was developed by Dr. Albert Sabin in the 1960s. "I remember how much better things got after the vaccines came out. They changed everything," John says.

Keep Reading Show less